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Summary: N-Tosyl 0-2-propenyl carbamates 4 undergo aminocarbonylation to provide 

N-tosyl-2-oxazolidinone 4-acetic acid esters 5 by the catalysis of PdC12 under 1 atm of CO. 

In recent papers,1 we have disclosed that ureas2 of types 1 and 2 and carbamatesj of 

type 3 undergo smooth aminocarbonylations by the use of catalytic amounts of PdC12 

(Scheme I). At the same time, we reported that carbamate of type 4 was completely indif- 

ferent to the aminocarbonylationtb (equation 4, Scheme 1). In view of the higher reactiv- 

ity of endo-urea 2 than exe-urea 1 (cf. the reaction conditions shown in equations 1 and 

2), the reason for the exceedingly low reactivity of endo-carbamate 4, as compared with 

exe-carbamate 3, has been a question of long standing to us. 
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Here we report the first successful palladium(II)-catalyzed aminocarbonylation of 

endo-carbamates 4, which proceeds in a quite different mechanism from those for 1 - 3. 

The reaction of endo-carbamates 4 highly depends on the kind of the substituents RI and 

R2- As for RI, the carbamate 4 with RI = Me or Ph did not provide aminocarbonylation 

product 5 in any detectable amounts under the conditions ever examined. The reaction 

was only successful for the carbamates with RI = tosyl. As for R2, the carbamates 4 with 

R2 = H, Me, and isobutyl underwent cyclization under acidic buffer conditions (condition A, 

see footnote 1, Table 2), although being very sluggish and requiring 80 - 90 h at 30 “C for 

completion (entries 1 - 3, Table 2). Under the similar conditions, however, the carbamates 

with R* = CH2CH2Ph (4d) and tert-butyl (4e) suffer from either decomposition or low 

conversion (entries 6 and 9, Table 2). 

Table 1. Optimization of Reaction Conditions for the Palladium(ll)-catalyzed Oxidative 

Aminocarbonylation of 4 (R’ = toluenesulfonyl). 

entry carbamte 4 conditions1 ) % isolated yield21 

(R2) solvent base additive temp., time (% conversion) 

1 4b: Me MeOH-AcOH AcONa ---__ 30 “C, 87 h 5b: 89 (100) 

2 4d: PhCH2CH2 MeOH-AcOH AcQNa -____ 30 “C, 72 h 5d: 10 (100) 

3 4d: PhCH2CH2 MeOH-AcOH AcONa MOA 30 “C, 68 h 5d: 44 (100) 

4 4d: PhCH2CH2 MeOH-A&H _____ _____ 30 ‘C, 24h 5d: 0 (0) 

5 4d: PhCH2CH2 MeOH _____ _____ 30 “C, 75 h 5d: ---- (100)3) 

6 4d: PhCHZCHZ MeOH AcONa ---__ 30 “C, 2 h 5d: 43 (48)4) 

7 4d: PhCH2CH2 MeOH AcONa MOA 30 “C, 8 h 5d: 100 (100) 

1 ) Carbamate 4 (1 mmol), PdC12 (0.25 mmol), CuC12 (2.3 mmol), CO (1 atm) in MeOH-AcOH 

(2 mL-5 mL) or in MeOH alone (8 mL) in the presence or absence of AcONa (3 mmol) 
and MOA (methyl orthoacetate, 18 mmol). 

2) Isolated yield based on conversion. 
3) Complex mixture of products, containing less than 10% of 4d. 
4) No further reaction owing to precipitation of Pd-black. 

In order to widen the structural flexibility, a variety of conditions have been screened 

taking 4d as a probe. The results are summarized in Table 1. As apparent from this 

Table, basic buffer conditions B (entry 7, Table 1),4 which differs from the conditions A 

(entry 2) in lacking AcOH and containing methyl orthoacetate, was most satisfactory. 

Methyl orthoacetate,5 judging from two pairs of results (entries 2 and 3 and 6 and 7, Table 

l), was very effective to improve the yields and seems to serve to suppress such PdClz- 

consuming side reactions as oxidations of methanol to formaldehyde and of carbon 

monoxide to dimethyl carbonate. Acceleration of reactions by an addition of sodium 

acetate (entries 6 vs. 5, Table 1) and by a deletion of acetic acid (entries 6 vs. 2 and 7 vs. 

3) clearly indicates that the cyclization of N-tosyl carbamates 4 (pKa = 4.2)6 proceeds via 

dissociation of NH proton. This makes sharp contrast to the observations that 1 - 3 

undergo cyclization under acidic conditions4 via a non-dissociated NH form.1 
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Table 2. Palladium(ll)-catalyzed Oxidative Aminocarbonylation of KToluenesulfonyl 
O-Ally1 (4) and O-Homoallyl Carbamates (6) 

entry substrate 
4 or 6 

conditions ‘) product % yield (% conversion) 
2) 

5 or 7 [cis : tram ratio] 3, 
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80 (90) 

0 (0) 
57 (SO) [ca. 1 : 501 

14 (100) 
86 (71) 

2 (50) 
25 (52) 

9 (100) 

0 (80) 
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1) Conditions A: carbamate 4 or 6 (1 mmol), PdC& (0.25 mmol), CuC12 (2.3 mmol), NaOAc (3.0 mmol), 

CO (1 atm, balloon) in MeOH-AcOH (2 mL-5 mL) at 30 “C; conditions B: carbamate (1 mmol), PdCIB 

(0.25 mmol), CuC12 (2.3 mmol), NaOAc (3 mmol), CO (1 atm), methyl orthoacetate (18 mmol) in MeOH 

(8 mL) at 30 “C; conditions B’: the same as the conditions B except for PdC12 (0.10 mmol). 

2) Isolated yield based on conversion. 

3) cis : Vans Ratio determined by ‘H NMR. 
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The optimum conditions A and B thus decided were applied for the aminocarbonylation 

of N-tosyl carbamates possessing characteristics in their structural features. Some repre- 

sentative results for 0-2-propenyl (4) and O-3-butenyl carbamates (6) are summarized in 

Table 2. In every case, the reaction was run until Pd-black precipitated.7 A reduced 

amount of PdCl2 (0.1 equivalents) may be applied (entries 5 and 8, Table 2). 

O-(2-Methyl-2-propenyl) carbamate (4g) was very reluctant (entries 13 and 14, Table 

2), and O-(3-methyl-Z-propenyl) carbamate was unreactive toward cyclization and gave 

only a mixture of decomposition products (conditions B for 28 h, 79% conversion). 

Like many other precedents,lb,* the cyclization giving six-membered nitrogen hetero- 

cycles met difficulties. 0-(3-Butenyl) (6a, entries 15 and 16, Table 2), 0-(l-methyl-3- 

butenyl) and 0 -[ I-(2-phenylethyl)-3-butenyl] carbamates gave the expected six-mem- 

bered products in similarly poor yields, Among these, the reaction of 6b (entry 17, Table 

2) was exceptional, which provided 7b in good yield. 

Although the aminocarbonyiation of 4 and 6 could be realized, there still remain prob- 

lems in its limited scope and low turn-over numbers of the catalyst. Further improve- 

ment and application to the syntheses of physiologically interesting y- and &hydroxy p- 

amino acids (e.g., negamycing and y-hydroxy P-1ysine)ro and /3-lactams are continuing 

subjects of our concern.1 1 
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